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Abstract
Neutron diffraction experiments, made at a steady-state reactor source, were
used to study the structure of liquid 7Li at temperatures of 197, 452 and 595 ◦C.
A careful data analysis procedure was undertaken in which specific issues
taken into account include (i) the influence of Brillouin modes on the measured
diffraction pattern at small scattering vectors, (ii) inelasticity corrections that
are significant for light atom systems, such as lithium, and (iii) the effects
caused by the diffractometer resolution function. Data sets taken for the same
liquid temperature using different incident neutron energies yield ion–ion partial
structure factors, SII(k), that are in agreement within the statistical errors. The
SII(k) are compared with previous experimental results and with the results
obtained from liquid state theory and molecular dynamics methods made using
several different local pseudopotentials. Finally, the valence electron form
factor, ρ(k), is estimated by combining SII(k) with x-ray diffraction data and the
ion–valence electron partial structure factor, SIe(k), is calculated by combining
SII(k) with the ρ(k) obtained from both experiment and theory. The results
show that the extraction of ρ(k) and SIe(k) by a combination of neutron and
x-ray diffraction methods is feasible in practice, but demonstrates a need for
new x-ray diffraction experiments on liquid lithium.

1. Introduction

Liquid lithium has an electronic structure, 1s22s, which gives it a larger ratio of valence to
core electrons than for all other metals, with the exception of beryllium which is, however, an
extremely difficult material to study in the liquid phase owing, for example, to its high melting
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point of 1278 ◦C, affinity for oxygen when heated and toxicity [1, 2]. The liquid can be treated
as a binary mixture of ions and valence electrons whereby its structure can be described in
terms of ion–ion, SII(k), ion–valence electron, SIe(k), and valence electron–valence electron,
See(k), partial structure factors, where k denotes the magnitude of the scattering vector
[3–5]. The former, SII(k), can be measured directly in a neutron diffraction experiment since
the neutrons are scattered by the nuclei and, although they are also scattered by unpaired
electrons, this contribution can be neglected: the Pauli paramagnetic susceptibility of the
unpaired conduction electrons has a minute size characteristic of diamagnetic materials [6].
By comparison, x-rays are scattered by the electrons and yield a combination of all three partial
structure factors. It is then feasible, by following the theory of Chihara [5], to extract SIe(k)

and the valence electron form factor, ρ(k), for a liquid metal by combining the results obtained
from neutron and x-ray diffraction experiments.

The structure (ionic and electronic) and dynamics of both liquid and solid lithium have
long been the subject of interest and many local [7–11] and non-local [12–18] pseudopotentials
have been proposed: the choice of a suitable pseudopotential is an essential first step in
the development of most theories for simple liquid metals [19, 20]. In recent years, the
static and dynamical properties of liquid lithium have been investigated using a variety
of theoretical and computational methods, including the variational modified hypernetted
chain (VMHNC) approximation [11, 21, 22] and the quantum hypernetted chain (QHNC)
approximation [9, 23] in the integral equation theory of liquid state physics, classical molecular
dynamics simulations [17, 18, 24–27] and ab initio molecular dynamics simulations made using
both the Kohn–Sham [28] and orbital-free [20, 29–31] methods. Reliable experimental results
are, therefore, a prerequisite for testing the accuracy of the different potentials together with
the different theoretical and computational approaches in which they are employed. Previous
diffraction measurements on liquid lithium have shown, however, that the investigation of its
structure by experiment involves significant challenges [32].

X-ray diffraction experiments, for example, are not straightforward because the proportion
of valence (delocalized) electrons is high and the effect of delocalization on the inelastic
Compton scattering is not completely understood [32, 33]. Likewise, neutron diffraction
experiments are demanding [34] owing to the relatively large incoherent scattering cross-
section of lithium [35], the small mass of the lithium nucleus, which can result in significant
and unwanted inelastic scattering effects, and there are potential pitfalls owing to the high
sound velocity [36]. This follows since in every neutron diffraction experiment there exists an
accessible kinematic range (k, ω) that is dependent on the incident neutron velocity, where h̄ω

denotes the energy transfer in the neutron–nucleus interaction. The detector in a diffraction
experiment performs an integration over the coherent ion–ion dynamical structure factor,
SII(k, ω), along specific pathways which must therefore pass through the main features of
SII(k, ω) if reliable ion–ion static structure factors, SII(k), are to be obtained. Such features
include the Brillouin excitations at low-k values which have a position in energy that is
determined by the speed of sound [34, 37–40]. Previous reactor-based experiments on liquid
lithium were carried out using incident neutrons of wavelength 0.695 Å [33, 41] and, as will
be described in section 2, the integration path of the detector does not make a clean cut
through the Brillouin modes of SII(k, ω) at low-k values [34, 42]. Furthermore, in the latter
neutron diffraction experiments the incoherent scattering cross-section of lithium was used as
an adjustable parameter in a method used to ensure that the measured SII(k) has the correct
low-k and high-k limits. As will be shown in section 5, the adopted analysis procedure is,
however, unsatisfactory and leads to erroneous peak heights.

All of the above provided significant motivation for a new neutron diffraction experiment
to study the structure of liquid lithium. A steady-state reactor source was again used but



Structure of liquid lithium 197

experiments were carried out using two different incident neutron wavelengths of 0.4962 and
0.7011 Å (corresponding to energies of 332 and 166 meV, respectively) in order to vary, and
hence help assess, the effects arising from both the detector integration path and inelastic
scattering events. A 7Li sample was selected for the investigation since this isotope is a
much weaker absorber of thermal neutrons than 6Li [35]. Furthermore, the experiments were
performed at three different temperatures above the melting point of 180.5(1) ◦C [2, 43]7,
namely 197, 452 and 595 ◦C, with the aim of (i) following the development of the structure
with temperature and (ii) checking that the measured low-k limit, SII(0), obtained from the
diffraction experiments at the different temperatures is in agreement with that obtained from
isothermal compressibility measurements (see, for example, Squires [44]).

The essential theory required to understand the diffraction results is first given in section 2
and includes an account of, firstly, the relation between the Brillouin excitations and the
detector integration path at low k values and, secondly, the inelasticity corrections. The
diffraction experiments are then outlined in section 3 along with the data analysis procedure.
The results are presented in section 4 where the effect of the diffractometer resolution function
is also considered. In section 5, the neutron diffraction results for SII(k) are compared with
those previously obtained from experiment and from the integral equation and molecular
dynamics methods made using both the Ashcroft empty core local pseudopotential and a local
pseudopotential derived using the neutral pseudoatom (NPA) method. Finally, the results are
used in conjunction with the x-ray data of Olbrich et al [33] and other data sets to obtain the
best estimates of the valence electron form factor, ρ(k), and the SIe(k) partial structure factor.
A comparison of these functions is made with several of those that have been calculated for
liquid lithium and which are available in the literature [9, 18, 22, 23, 30, 45].

2. Theory

The effective differential scattering cross-section per nucleus measured in a neutron diffraction
experiment on a single-component system such as lithium is given by [44](
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where σcoh = 4πb2
coh is the bound coherent scattering cross-section of lithium, bcoh is the

corresponding bound coherent scattering length, E0 ≡ h̄ω0 is the incident energy of the
neutrons, k0 and k1 are the magnitudes of the incident and scattered wavevectors, respectively
(in vector notation k = k0 − k1), and η(k1) is the detector efficiency. For the incoherent
contribution to the scattering:(
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where σinc = 4πb2
inc is the bound incoherent scattering cross-section of lithium, binc is the

corresponding bound incoherent scattering length and SII,inc(k, ω) is the incoherent ion–ion
dynamical structure factor. For a reactor experiment, the measured differential cross-section
is, however, determined experimentally by evaluating the integrals of equations (2) and (3)
over ω at constant scattering angle 2θ instead of at constant k.

7 The notation (x) refers to an error of ±x in the last significant figure(s).
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Table 1. Parameters describing liquid lithium at the different temperatures studied in the neutron
diffraction experiment. The SII(k = 0) limiting values are calculated by using equation (7).

T (◦C) Mass density (g cm−3) [56] n0 (Å−3) cs (m s−1) [36] κT (10−10 Pa−1) [63] SII(0)

197 0.5134(1) 0.044 54(1) 4544 1.0247 0.029(2)
452 0.4909(1) 0.042 59(1) 4389 1.1994 0.051(3)
595 0.4771(1) 0.041 39(1) 4301 1.3176 0.065(3)

For molten lithium at sufficiently small k values, SII(k, ω) comprises a Rayleigh peak
centred at ω = 0 and two Brillouin, or sound, peaks centred at ω = ±csk, where cs is the
speed of sound in the liquid [34, 37–40]. To illustrate the relation between SII(k, ω) and the
integration path of the detector, it is convenient to consider the reduced variables ω∗ ≡ ω/ω0

and k∗ ≡ k/k0 [46]. Then the position of the sound mode becomes

k∗ = v0

2cs
ω∗, (4)

where v0 = h̄k0/mn is the incident neutron velocity, mn the neutron mass and the detector
integration pathway is given by

k∗ = [2 − ω∗ − 2
√

1 − ω∗ cos 2θ ]1/2. (5)

These pathways for an incident neutron wavelength, λ, of 0.4962 or 0.7011 Å are compared in
figure 1 with the dispersion curves for the Brillouin modes, as calculated from equation (4) by
using the cs values from Beyer [36] (see table 1) for the minimum and maximum temperatures
investigated experimentally. In addition to the position of the Brillouin mode peaks, the half-
width at half-maximum of the peaks is also marked where HWHM = 6.25k meV and k is
in units of Å−1 [47] such that k∗ = v0ω

∗/2(cs ± 950). As shown in figure 1, the integration
pathway for λ = 0.4962 Å neutrons cuts cleanly through the Brillouin mode peaks at both
temperatures, in contrast to the pathway for λ = 0.7011 Å neutrons which, having intersected
the peak maximum at low k∗, runs approximately parallel to the dispersion curve and does not
intersect the lines marking the HWHM. In the case of the latter, the integration of SII(k, ω)

performed by the detector is anticipated to produce a static structure factor, SII(k), which has
too high an intensity at low k.

By making the static approximation and taking into account the detector integration
pathway [44], the effective differential scattering cross-section given by equation (1) can be
rewritten as

1

η(k0)

(
dσ

d�

)
eff

= b2
coh[SII(k) − 1] + (b2

coh + b2
inc)[1 + P(k)] (6)

where k = 4π sin θ/λ is the magnitude of the scattering vector within the static approximation,
η(k0) = 1 − exp(−γ /k0) is the detector efficiency for incident energy neutrons, γ is the
absorption coefficient of the detector;and P(k) is the inelasticity correction, which is significant
when energy transfers in the neutron–nucleus interaction, h̄ω, are non-negligible by comparison
with the incident neutron energy E0. The low-k limit of the static structure factor is given
by [44]

SII(0) = n0χTkBT, (7)

where n0 and χT denote the ionic number density and isothermal compressibility, respectively,
the high-k limit of SII(k) is unity and the data should satisfy the sum-rule relation [48]∫ ∞

0
dk [SII(k) − 1]k2 = −2π2n0. (8)
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Figure 1. The integration pathway of the detector for λ = 0.4962 or 0.7011 Å incident neutrons
at scattering angles, 2θ , of 1.6◦ and 3.0◦ (lower and upper chain curves, respectively) compared
with the dispersion curves for Brillouin modes in liquid lithium at temperatures of 197 and 595 ◦C
(lower and upper full straight lines, respectively). The pathways for these 2θ values are nearly
symmetrical at small ω∗ and are therefore shown only for positive values of this variable. The
broken straight lines mark the position of the half-width at half-maximum of the Brillouin mode
peaks and for clarity of presentation they are only shown for one side of the peak maxima.

Three different schemes were used to calculate P(k) which, in the case of 7Li, has a large
slope owing to the small nuclear mass of 7.016 amu [2]. The resultant correction terms at
the lowest temperature of 197 ◦C used in the neutron diffraction experiments, calculated using
γ = 21.54 Å−1, are compared in figure 2.

In the first scheme of Yarnell et al [49], a moments expansion is made of SII(k, ω) about
h̄ω = 0 and P(k) is given by

P(k) = −C1
Erec

E0
+ O2(k) − C3

Erec

E0

kBT

E0
+

mn

2M

(
O ′

2(k) +
kBT

E0

)
(9)

where the functions O2(k) and O ′
2(k) are zero if the correction is made to first order and are

given by the expressions O2(k) = C2(Erec/E0)
2 and O ′

2(k) = Erec/E0 if the correction is
made to second order. The recoil energy of the scattering nucleus is Erec = h̄2k2/2M , the
nuclear mass is M and the constants C1, C2 and C3 are dependent on the detector efficiency:
for γ = 21.54 Å−1 they take values of 0.810, 0.152 and 0.256 for the λ = 0.4962 Å neutrons
and 0.881, 0.214 and 0.203 for the λ = 0.7011 Å neutrons, respectively. Terms proportional
to k2 and k4 can thereby be identified in the P(k) given by equation (9).

In the second scheme originating from Wick [50], an expansion of SII(k, ω) is instead
made about the recoil energy, Erec, and the resultant inelasticity correction to first order is
given by the expression [51, 52]

P(k) + 1 = η(krec)
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Figure 2. The inelasticity correction P(k) for liquid 7Li at 197 ◦C obtained by using the three
different schemes described in the text for incident neutron wavelengths of 0.4962 and 0.7011 Å:
first-order correction after Yarnell et al [49] (chain curve); second-order correction after Yarnell
et al [49] (full curve); correction after Wick [50–52] (dotted curve) and correction after integrating
over an ideal gas scattering law [53] (broken curve).

− (Br − Ar )

2(M∗ + 1)4
M∗(z + c)2(M∗ − cz + s2)

}]
(10)

where z2 = (M∗)2 − s2, s = sin(2θ), c = cos(2θ) and M∗ = M/mn is the reduced mass. Ar

and Br are dependent on the properties of the detector and are given by

Ar = 1 −
(

1
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− 1

)
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(
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)
(11)
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(
1
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)
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where η(krec) = 1 − exp(−γ /krec) is the detector efficiency for an energy transfer equal to
Erec which corresponds to k1 = krec = k0(c + z)/(M∗ + 1).

In the third scheme [53], P(k) is evaluated numerically by taking the detector integration
pathway through the perfect gas scattering law such that

P(k) + 1 = h̄

η(k0)

∫ ω0

−∞
dω

k1

k0
η(k1)SII(k, ω) (13)

where (see, for example, [44])

SII(k, ω) =
(

β

4π Erec

)1/2

exp

[
− β

4Erec
(h̄ω − Erec)

2

]
, (14)

β ≡ (kBT )−1 and T is the absolute temperature. Since there are no forces of interaction
between the particles in a perfect gas, the coherent and incoherent ion–ion dynamical structure
factors, SII(k, ω) and SII,inc(k, ω), are identical.



Structure of liquid lithium 201

The real-space information corresponding to SII(k) is contained in the partial pair
distribution function

gII(r) = 1 +
1

2π2n0r

∫ ∞

0
dk [SII(k) − 1]k sin(kr) (15)

and the mean coordination number of a lithium ion between r = 0 and a spherical shell defined
by a cut-off radius rc is given by

n̄(rc) = 4πn0

∫ rc

0
dr r2gII(r). (16)

3. Experimental method

The diffraction experiments were made using the D4B instrument at the Institut Laue–Langevin
(Grenoble, France) on a sample of enriched 7Li (99.99 at.%). The sample was held in
a cylindrical vanadium container of 1.31 cm diameter and 0.02 cm wall thickness which
was evacuated and sealed by electron beam welding at the Institut für Kerntechnik und
Energiewandlung (IKE), Stuttgart. The sample was fully illuminated by a 5 cm high and
1.4 cm wide neutron beam.

At temperatures of 197(3), 452(3) and 595(3) ◦C, diffraction patterns were measured for
(i) the sample in its container in a cylindrical vanadium heater, (ii) a matching empty vanadium
container in the vanadium heater and (iii) the empty vanadium heater. The measurements at
all three temperatures were made using neutrons of wavelength 0.7011(7) Å, corresponding
to the highest attainable neutron flux on D4B and the measurements at the lower and upper
temperatures were also made using neutrons of wavelength 0.4962(5) Å, in order to reduce
the inelasticity corrections and access a large maximum energy transfer h̄ω0. For both
incident neutron wavelengths, the mean intensities observed in measurements (i) and (ii) were
approximately 5.6 and 2.3 times higher than the mean intensity observed in measurement
(iii) for a range of scattering angles where the effect of inelasticity corrections is small. For
both wavelengths at room temperature, the diffraction pattern for a cylindrical vanadium rod of
diameter 1.0018 cm without the heater was also measured for normalization purposes and the
intensity with nothing placed at the beam position was measured to help assess the background
count rate. In addition, the intensity for a cadmium neutron absorbing rod in the can and heater
at room temperature was measured for both wavelengths to account for the effect of sample
self-shielding on the background count rate at small scattering angles [54]. Each complete
diffraction pattern was built up from the intensities measured for the different detector groups.
These intensities were saved at regular intervals and no deviation between them was observed,
apart from the expected statistical variations, which verified the diffractometer stability [55].

For 7Li, bcoh = −2.22(2) fm, binc = −2.49(5) fm and the coherent and incoherent free
scattering cross-sections used in the data analysis are 0.474(8) and 0.60(2) b, respectively [35].
The absorption cross-section, σabs, for 7Li at λ = 1.798 Å is 0.0454(3) b [35] and its value
at other wavelengths was calculated assuming σabs ∝ λ. An adjustment was made to take
into account the small but finite contribution (0.01 at.%) from the absorption cross-section of
6Li. The mass density at the different temperatures, taken from Shpil’rain et al [56], and the
corresponding number density, n0, are given in table 1.

In the data analysis procedure used to extract (dσ/d�)eff from the measured data sets [57],
the intensity measured for the empty vanadium heater was treated as a background contribution
to the scattering such that(

dσ

d�

)
eff

= 1

N AS,SC

[(
I ′
SC(θ)

a(θ)
− MSC(θ)

)
− AC,SC(θ)

AC,C(θ)

(
I ′
C(θ)

a(θ)
− MC(θ)

)]
(17)



202 P S Salmon et al

where I ′
SC(θ) and I ′

C(θ) represent the measured intensities for the sample (S) in its container (C)
and the empty container, respectively, which are normalized to the incident flux and corrected
for background scattering. In equation (17), N is the total number of Li nuclei in the neutron
beam and the calibration factor a(θ) was obtained from the vanadium rod intensity I ′

V(θ),
again normalized to the incident flux and corrected for background scattering, using

a(θ) = I ′
V(θ)[AV,V(θ)NVb2

inc,V(1 + PV(k)) + MV(θ)]−1 (18)

where NV is the total number of vanadium nuclei in the neutron beam, binc,V is the bound
incoherent scattering length of vanadium [35] and PV(k) is the vanadium inelasticity correction
calculated to second order by using equation (9). The Ai, j(θ) are the Paalman and Pings [58]
attenuation coefficients and refer to neutrons that are scattered in medium i and attenuated
by absorption and scattering in medium(s) j . The Mi (θ) are the multiple scattering cross
sections that were calculated in the quasi-static approximation by using the method of Soper
and Egelstaff [59]. The Ai, j(θ) and Mi (θ) were calculated using free scattering cross-sections
and the correction procedure described by equation (17) ensures that the attenuation corrections
are applied to once-scattered neutrons.

It was found that, for the liquid lithium data sets taken using the smallest wavelength
neutrons (λ = 0.4962 Å corresponding to E0 = 332 meV), the slope on (dσ/d�)eff that
arises from a departure from the static approximation could best be reproduced, and thereby
eliminated, by calculating P(k) to second order using equation (9) (see figure 2). Nevertheless,
this equation overestimates the correction at the highest k values, leading to distorted SII(k) for
k > 16 Å−1. Since the SII(k) show no discernible oscillations arising from ionic ordering in
this upper k range, the data sets obtained for the smallest wavelength neutrons were truncated
at k = 16 Å−1.

By comparison, for the largest wavelength neutrons (λ = 0.7011 Å corresponding to
E0 = 166 meV) none of the schemes for correcting the inelasticity effects outlined in section 2
proved to be satisfactory, even if an effective nuclear mass was assumed or a variation was
allowed for in the detector absorption coefficient γ . An empirical approach had therefore to
be adopted and, in the spirit of equation (9), the inelasticity effects were modelled using a
polynomial expansion of the form P(k) = a0 + a2k2 + a4k4 [60], where a0 was set equal to
the P(0) = kBT/2M∗ E0 limit as obtained from equations (9), (10) or (13), while a2 and a4

were treated as arbitrary coefficients. It was found that the slope on the data arising from
inelasticity effects could be satisfactorily modelled up to k = 14 Å−1, at which point the data
sets for the λ = 0.7011 Å neutrons were truncated: thereafter the SII(k) show no discernible
oscillations arising from ionic ordering. The fitted a2 and a4 coefficients, in units of 10−4 Å−2

and 10−7 Å−4, are −2.15 and 2.77 for 197 ◦C, −2.32 and 3.41 for 452 ◦C and −2.39 and 3.80
for 595 ◦C, respectively. In the earlier neutron diffraction study of liquid lithium by Olbrich
et al [33, 41] using λ = 0.695 Å neutrons, the inelasticity corrections were calculated to first
order by using equation (9) which also sets a limiting value P(0) = kBT/2M∗ E0.

The static structure factors thus deduced for both neutron wavelengths were found to sit
on an incorrect level which necessitated a shift of the data sets by ≈0.11. The source of
this problem was investigated by finding the effect on the results of changing the data analysis
procedure. For example, the scattering cross-sections were systematically altered, an allowance
was made for an error in the sample enrichment and the data were re-analysed from scratch
by taking into explicit account the attenuation and multiple scattering caused by the heater
whilst treating the intensity with nothing placed at the sample position as the background. It
did not prove possible to unambiguously identify the cause of the shifts. However, it is notable
that, after the application of a shift, each structure factor has the correct high-k limit, the sum-
rule relation of equation (8) is obeyed and the data are consistent with the correct SII(k → 0)
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Figure 3. The neutron data for liquid lithium at low-k, plotted as [SII(k)−SII(0)]/k versus k, where
the SII(0) values are taken from table 1. The graphs correspond to incident neutron wavelengths
of λ = 0.4962 Å (upper row) and λ = 0.7011 Å (lower row) and to temperatures of 197, 452 and
595 ◦C (from left to right). The dotted curves represent the experimental data sets, the full curves
show the parts of these data sets chosen to make a straight line fit through the origin and the broken
curves show the straight line fits. The rise in intensity at small-k values for the λ = 0.7011 Å data
sets is related to the integration path of the detector over the Brillouin modes, as explained in
section 2.

limit as defined by equation (7). Furthermore, after an allowance is made for the effect of
the Brillouin modes on the low-k behaviour of the λ = 0.7011 Å data sets and a correction
is applied for the resolution function of the diffractometer (see section 4), the final SII(k) for
liquid lithium at a given temperature measured using both neutron wavelengths are found to
be in agreement within the statistical errors. Consequently, there was no need to impose any
additional scaling of the data, i.e. the calibration factor obtained from the vanadium scattering
by using equation (18) was found to be adequate.

4. Results

The low-k region of SII(k) for simple liquid metals is of particular interest since it contains
important information on the long-range part of the interionic potential [27, 61, 62]. The
structure factor in this low-k region also offers a good guide to the reliability of the applied
correction procedures since the measured data should extrapolate to the SII(k = 0) limit given
by equation (7), as calculated using theκT from Hornung [63] summarized in table 1. In figure 3,
the measured data sets in the low-k region are represented in a plot of [SII(k)− SII(0)]/k versus
k (see [33, 41, 62]), where the SII(0) values are taken from table 1. The divergence of the
λ = 0.7011 Å data sets from the limiting zero value can be attributed to the integration path
of the detector over the Brillouin modes in SII(k, ω), as shown in figure 1 and described in
section 2. By comparison, the λ = 0.4962 Å data sets tend to the correct thermodynamic
limit within the precision shown in figure 3: the observed agreement is not some artefact of
an empirical fitting procedure.

To extrapolate the measured SII(k) to small k values, the data in figure 3 were fitted by
using a least squares algorithm to a straight line which was constrained to pass through the
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Figure 4. The SII(k) for liquid lithium at 197 and 595 ◦C measured using incident neutrons of
wavelength λ = 0.4962 Å (broken curves) or λ = 0.7011 Å (full curves). A comparison is made
both before (upper row) and after (lower row) the resolution function correction (see the text). The
dotted curves show the differences, SII(k) [λ = 0.7011 Å] − SII(k) [λ = 0.4962 Å], between the
data sets.

origin, after the erroneous low-k data points for the λ = 0.7011 Å data sets were omitted
along with the noisy data points at the lowest k values for the λ = 0.4962 Å data sets. As
shown in figure 3, the fitted lines are consistent with SII(k) ∝ k2 for k � 1.5 Å−1 within the
experimental error.

A comparison of the SII(k) obtained by using both neutron wavelengths at the lowest
temperature of 197 ◦C is given in figure 4. The functions have the correct low-k and high-k
limits and, as shown by the difference between them, they are in agreement within statistical
errors over the entire measured k range, except in the region of the first peak at ≈2.48 Å−1.
Close inspection of the data sets shows that this discrepancy arises from a small relative shift
to lower-k of the first peak for the λ = 0.4962 Å data set and from a relative lowering of
its height. These effects, which are also observed but with reduced magnitude for the SII(k)

measured at the highest temperature of 595 ◦C (see figure 4), can be attributed to the variation
with wavelength of the D4B resolution function.
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Figure 5. Schematic drawing to illustrate the origin of the ‘umbrella effect’ at small scattering
angles when several diffraction rings of the Debye–Scherrer cone intersect with a single detector
segment.

The resolution function of a two-axis diffractometer like D4B is determined by several
parameters, including the incident neutron wavelength, the sample dimensions, the detector
height and distance from the sample. Depending on the instrument set-up, the resolution
function can give rise to a so-called ‘umbrella effect’ [64, 65] which can be particularly
important at small-2θ angles. This effect arises from the intersection of the diffraction rings
of the Debye–Scherrer cone with a detector of finite size. When the radius of a ring is small
and the detector segments (in this case defined by the cathode wires) are large, each segment
can observe intensity from a diffraction ring at 2θ values higher than the scattering angle
at which the segment is nominally located (see figure 5). Hence if the diffraction pattern
is increasing in intensity with scattering angle, the measured intensity at the nominal angle
will be increased while the converse occurs if the scattering intensity is decreasing, i.e. peaks
can be asymmetrically broadened and shifted to lower angles. For a liquid, the effect will
be significant for sharp peaks in SII(k) at low-k values, particularly if large samples are used
as in the present liquid lithium experiment [65]. The effect also increases with decreasing
wavelength since the rings of the Debye–Scherrer cone move closer together.

A correction for the resolution function was made using the ‘moments method’ of
Howells [66] outlined in the appendix. The resolution function of D4B in the set-up
corresponding to our experimental conditions was first calculated for a Bragg peak taking
into account the sample width and height, the vertical focusing of the incident beam and its
horizontal dispersion, the detector height, the sample-to-detector distance and the umbrella
effect [65]. Next, the moments of the resolution function were calculated together with the
first and second derivatives with respect to the scattering angle 2θ of the static structure factor
hitherto obtained and which is now denoted by I (2θ). The static structure factor, corrected
for the resolution function of the diffractometer, is then given by (see equation (A.4))

SII(2θ) = m00(2θ)I (2θ) + 1(2θ) + 2(2θ) (19)

where the remaining symbols are defined in the appendix. As illustrated in figure 6, the main
effect of the first and second correction terms, 1(2θ) and 2(2θ), is to shift and sharpen,
respectively, the first peak in the uncorrected structure factor. The comparison in figure 4
shows that the resolution function correction removes most of the initial discrepancy between
the data sets measured using the two different wavelengths, especially for the liquid measured
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Figure 6. Comparison of the SII(k) for liquid lithium at 197 ◦C measured using incident neutrons
of wavelength λ = 0.4962 Å both before (chain curve) and after (full curve) the resolution function
correction. The first and second resolution function correction terms, 1 and 2, of equation (19)
are given by the dotted and broken curves, respectively.

at the lowest temperature of 197 ◦C for which the correction is largest, owing to the relative
sharpness of the first peak in the static structure factor.

The SII(k) for the different wavelengths and temperatures, corrected for the finite resolution
function of the D4B diffractometer, are shown in figure 7. The data sets have the correct low-k
and high-k limits (the resolution function correction has a significant effect only around the
region of the first peak, as shown in figures 4 and 6) and they also obey the sum-rule relation
given by equation (8). The corresponding pair distribution functions, given in figure 8, were
obtained by truncating the corresponding SII(k) at the same maximum value kmax = 14 Å−1

prior to Fourier transformation using equation (15). It was verified that extension of the
λ = 0.4962 Å data set to kmax = 16 Å−1 had no noticeable effect on the gII(r), except in
the region of the unphysical low-r oscillations. In this region, the high first positive peak is
indicative of a small residual slope on the SII(k) functions, which emphasizes that none of the
inelasticity correction schemes defined by equations (9), (10) and (13) are fully adequate for
liquid lithium at the neutron wavelengths used in the present work.

5. Discussion

5.1. Temperature dependence of the structure and comparison with previous diffraction
studies

As illustrated in figure 9, the peaks in gII(r) for liquid lithium become lower and broader
with increasing temperature. The first peak does not, however, shift its position and the
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Figure 7. The SII(k) for liquid lithium obtained by using the full data analysis procedure, including
the resolution function correction. The points with error bars give the data points and the full
curves give spline fits to the data which were used to obtain the pair distribution functions, gII(r),
represented by the full curves in figure 8.

coordination number obtained from equation (16) by setting the cut-off radius, rc, to the first
minimum in gII(r) remains constant at ≈13 (see table 2). At all temperatures, the first peak
is also asymmetrical, as shown by reflecting its low-r side about the peak maximum (see the
lower inset to figure 9), and the volume change on melting (Vl − Vs)/Vs, where Vl and Vs

denote the volume of the liquid and solid, respectively, is small at 1.65% [67]. It is therefore
tempting to investigate the extent to which the local structure of the liquid just above the
melting point resembles that of the body-centred cubic (bcc) structure from which the crystal
melts, especially as the first symmetrized peak in gII(r) (represented in the lower inset to
figure 9) yields a coordination number of 8.4(4) at 197 ◦C. However, gII(r) does not give
information on three- or higher-body correlations and the coordination number n̄(rc) is not
particularly well defined (see the upper inset to figure 9), e.g. the precise value for the number
of nearest neighbours depends on whether rc is chosen to be at the first minimum of gII(r),
rgII(r) or r2gII(r) (see Pings [68]). Furthermore, the first symmetrized peaks in rgII(r) and
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Figure 8. The pair distribution functions, gII(r), for liquid lithium. The broken curves are obtained
by direct Fourier transformation of the points with error bars given in figure 7 and the full curves
are obtained by Fourier transformation of the spline fits to these data given by the full curves in
figure 7. For the latter, the unphysical low-r oscillations are set to zero for r values smaller than
the distance of closest approach between the centres of two lithium ions.

r2gII(r) yield coordination numbers of 8.8(4) and 9.1(4), respectively, at 197 ◦C. It is therefore
difficult to distinguish between different forms of hard sphere packing [69] in the liquid state
from information on gII(r) alone.

In figure 10, the structure factor for liquid lithium at 197 ◦C measured using
λ = 0.7011 Å incident neutrons is compared with the structure factors measured at a
comparable temperature in previous diffraction experiments (these data sets are tabulated
by van der Lugt and Alblas [32]). In particular, the new SII(k) differs markedly from that
measured in the neutron diffraction experiment of Olbrich et al [33] on liquid lithium at
197 ◦C made using λ = 0.695 Å incident neutrons. The latter SII(k) is lower in the region
1–2 Å−1 and the first peak is much higher, discrepancies which may be attributed in part to
use of the lithium incoherent scattering cross-section, σinc, as an adjustable parameter in the
data analysis procedure [33, 41]. The first peak in SII(k) measured by Olbrich et al [33] for



Structure of liquid lithium 209

100 2 4 6 8 12 14
Distance r [Å]

0.0

0.5

1.0

1.5

2.0

2.5

P
ai

r 
D

is
tr

ib
ut

io
n 

F
un

ct
io

n 
g II

(r
)

T = 197
 o
C

T = 452
 o
C

T = 595
 o
C

2          3          4          5          6

r [Å]

0

1

2
gII(r)

2              3              4              5

rc [Å]

0

10

20

n 
 (

r c 
)

Figure 9. The temperature dependence of the pair distribution function, gII(r), for liquid lithium.
The data sets were measured using λ = 0.7011 Å incident neutrons and the temperatures are
197 ◦C (full curve), 452 ◦C (dotted curve) and 595 ◦C (broken curve). The upper inset shows the
corresponding coordination numbers, n̄(rc), for different rc values (for a given temperature, the
n̄(rc) values measured using λ = 0.4962 Å incident neutrons are nearly indistinguishable on the
scale of the plot). The lower inset shows the result of symmetrizing the first peak for the 197 ◦C
data by reflection of its low-r part about the peak maximum.

Table 2. The first, r1, and second, r2, peak positions in the gII(r) for liquid lithium at different
temperatures together with the coordination number, n̄(rc), of the first peak obtained by using
equation (16) with rc taken from the first minimum in gII(r). The gII(r) were measured using
neutrons with different incident wavelengths λ.

Temperature (◦C) λ (Å) r1 (Å) n̄(rc) rc (Å) r2 (Å)

197 0.4962 2.97(2) 13.0(5) 4.11 5.52(3)
0.7011 3.00(2) 13.0(5) 4.11 5.55(3)

452 0.7011 3.00(2) 12.9(5) 4.17 5.68(3)
595 0.4962 2.99(2) 13.1(5) 4.23 5.68(3)

0.7011 2.99(2) 13.0(5) 4.23 5.59(3)

liquid lithium at 322 ◦C by using neutron diffraction is also higher than previously measured
by Ruppersberg and Egger [70] using the same incident neutron wavelength at the lower
temperature of 300 ◦C. The x-ray structure factor, SX(k), measured by Waseda [71] for liquid
lithium at 190 ◦C exhibits a systematic shift for k � 3 Å−1 of the oscillations to higher k values
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Figure 10. Comparison of the ion–ion structure factor, SII(k), for liquid lithium at 197 ◦C, measured
using incident neutrons of wavelength λ = 0.7011 Å (open circles), with the structure factors
measured in previous diffraction experiments: SII(k) from the neutron diffraction work of Olbrich
et al [33] at 197 ◦C (full curve); SX(k) from the x-ray diffraction work of Waseda [71] at 190 ◦C
(dotted curve); SX(k) from the x-ray diffraction work of Olbrich et al [33] at 193 ◦C (broken curve).
The dotted curve oscillating about zero gives the difference between SII(k) measured in the present
work and SII(k) measured in the work of Olbrich et al [33]. The inset shows the low-k region on
an expanded scale.

while the SX(k) of Olbrich et al [33] at 193(2) ◦C is higher than for the other structure factors
in the range 1.0 � k (Å−1) � 1.65. As will be discussed in section 5.3, differences in the
low-k region are nevertheless expected between the fully corrected structure factors measured
using neutron and x-ray diffraction.

5.2. The ion–ion structure factor: comparison with molecular dynamics simulations and
theoretical calculations

González et al [11, 22] studied the structure of liquid lithium, using the variational modified
hypernetted chain (VMHNC) approximation in the integral equation theory of liquids, and
several of its thermodynamic properties. Many potentials for lithium were used, including
the Ashcroft empty core local pseudopotential [7] and a local pseudopotential derived from
the neutral pseudoatom (NPA) method [11]. The former contains the core radius as a
fitted parameter while the latter has no adjustable parameters. Although the shape of these
pseudopotentials is very different, they were found to yield similar overall results for the static
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structure factor, SII(k), and the thermodynamics of liquid lithium. Canales et al [27] used
the Ashcroft empty core and NPA-derived pseudopotentials in classical molecular dynamics
simulations of liquid lithium and, by a comparison with experimental results, some features
were found that enabled a distinction to be made between them. For example, the NPA-
derived pseudopotential led to a better representation of the experimental sound velocity and
isothermal compressibility and also gave a structure factor, SII(k), in better agreement with
the experimental one at low-k values. Also, the NPA-derived pseudopotential led to a better
representation of the dynamical structure factor, SII(k, ω), measured in the high-resolution
inelastic x-ray scattering experiments of Sinn et al [38]. It was therefore concluded that the
NPA-derived pseudopotential is the more suitable for liquid lithium [38].

The Ashcroft empty core radius of 1.44 au (1 au ≡ 5.29 × 10−9 m) used in the VMHNC
calculations, and in the molecular dynamics simulations of Canales et al [27], was determined
using the height of the first peak in SII(k) measured in the neutron diffraction experiment of
Olbrich et al [33]. As shown in figure 10 there is, however, a clear disagreement between this
data set and the SII(k)obtained in the present neutron diffraction work. The new SII(k) for liquid
lithium at 197 ◦C (λ = 0.7011 Å) was therefore used to derive a new core radius of 1.35 au
and the VMHNC calculations and molecular dynamics simulations were repeated [72, 73]. As
shown in figure 11, there is a clear improvement in the agreement with the experimental SII(k)

at low-k values.
The new SII(k) and gII(r) for liquid lithium at 197 ◦C (λ = 0.7011 Å) are shown in

figures 12 and 13, respectively, where they are compared, firstly, with the VMHNC and
molecular dynamics results obtained using the Ashcroft empty core pseudopotential with the
re-parametrized empty core radius [72, 73] and, secondly, with the VMHNC and molecular
dynamics results obtained using the NPA-derived pseudopotential [11, 22, 27]. It is found
that the molecular dynamics results obtained using the Ashcroft empty core pseudopotential
yield the best overall agreement with the experimental SII(k) and gII(r) functions. It would
therefore be interesting to simulate the ion–ion dynamical structure factor, SII(k, ω), using the
new empty core radius in the Ashcroft potential to investigate the sensitivity of the dynamics
to this parameter.

Anta and Madden [30] have also investigated the structure of liquid lithium at 197 and
452 ◦C by using the orbital-free ab initio molecular dynamics simulation method. Their
results for SII(k), obtained using two local pseudopotentials labelled ‘A’ and ‘B’, which were
generated using different approaches of increasing sophistication, are compared with the new
neutron diffraction data in figure 14. There is good overall agreement between experiment
and simulation for both pseudopotentials, although pseudopotential ‘B’ is the more successful
at the lowest k values, as shown by the comparison for the liquid at 197 ◦C (see the inset to
figure 14). This pseudopotential also leads to a better account of the sound velocity and
the measured SII(k, ω) [38] in the low-k region. Thus, although there are discrepancies
with the experimental SII(k) in the region about 2 Å−1 (see figure 14), the method used to
generate pseudopotential ‘B’ was preferred by Anta and Madden [30] for constructing local
pseudopotentials for orbital-free molecular dynamics simulations.

5.3. The valence electron form factor and the ion–valence electron structure factor

Since Egelstaff et al [3] pointed out the possibility of separating the ion–valence electron,
valence electron–valence electron and ion–ion correlations in liquid metals by combining
the results from three different experimental methods, such as neutron, x-ray and electron
diffraction, several attempts have been made to separate these partial correlations [74].
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Figure 11. Comparison between the measured and theoretical SII(k) for liquid lithium at 197 ◦C in
the low-k region. The experimental data correspond to the new (λ = 0.7011 Å) neutron diffraction
results (open circles) and the theoretical results were obtained using the Ashcroft empty core
pseudopotential with a core radius determined from the height of the first peak in SII(k) taken
either from the old neutron diffraction results of Olbrich et al [33] (lower set of curves) or from
the neutron diffraction results of the present work (upper set of curves). The variational modified
hypernetted chain (VMHNC) calculations for the old [11, 22] and new [72] core radii are given by
the full curves and the molecular dynamics simulations for the old [27] and new [73] core radii are
given by the dotted curves. The SII(k = 0) limit calculated by using equation (7) is given by the
point with an error bar at k = 0. A representative error bar for the neutron diffraction data is also
shown.

Subsequently, Chihara [5] argued that there are both coherent and incoherent contributions
to the valence electron–valence electron structure factor, See(k), and showed that the ion–
valence electron correlations and valence electron form factor should be separable from a
combination of only two diffraction patterns, namely those measured in neutron diffraction
and x-ray diffraction experiments. Some progress along these lines has been made by
Takeda and co-workers [75, 76] although the veracity of their results has been called into
question [23, 29, 77, 78].

Following Chihara [5], the (Ashcroft–Langreth [79]) ion–valence electron partial structure
factor is defined by

SIe(k) = 1√
Z

ρ(k)SII(k) (20)

where Z is the number of valence electrons per ion, SII(k) is the ion–ion structure factor, which
is measured directly in a neutron diffraction experiment, and ρ(k) is the valence electron
form factor, which is dimensionless. In this formalism the liquid metal is regarded as a
system of ions, each having Z I = ZA − Z electrons, where ZA is the atomic number of the
corresponding atom, embedded in a uniform background gas of valence electrons, having mean
density ne

0 = n0 Z which cancels with the uniform positive background due to the ions so as to
satisfy the charge neutrality condition. Each ion attracts its own share of the valence electrons



Structure of liquid lithium 213

0 2 4 6 8           10
Scattering Vector k [Å

– 1
]

0

1

2

3

S
tr

uc
tu

re
 F

ac
to

r 
S II

(k
)

Neutron data
Simulation, Ashcroft
Simulation, NPA 
VMHNC, Ashcroft 
VMHNC, NPA 

0 0.5 1 1.5 2
k [Å

– 1
]

0.02

0.04

0.06

0.08

0.1

0.12

SII(k)

Figure 12. Comparison between the measured and theoretical SII(k) for liquid lithium at 197 ◦C.
The experimental data correspond to the new (λ = 0.7011 Å) neutron diffraction results (open
circles) and the theoretical results were obtained from classical molecular dynamics simulations,
made using either the Ashcroft empty core (dotted curve) [73] or neutral pseudoatom (NPA)-derived
(broken curve) [27] pseudopotential, and from variational modified hypernetted chain (VMHNC)
calculations, made using either the Ashcroft empty core (chain curve) [72] or NPA-derived (full
curve) [11, 22] pseudopotential. The Ashcroft empty core radius was derived from the first peak
height in the experimental SII(k). The inset shows the low-k region in more detail: the SII(k = 0)

limit calculated by using equation (7) is given by the point with an error bar at k = 0 and a
representative error bar for the neutron diffraction data is also shown.

which therefore pile up around the core centre and move with the ion to screen the inter-
ionic potentials. Although the screening electrons are not bound to the ion, the system of ion
plus screening cloud is sometimes called a pseudoatom and ρ(k) describes the corresponding
valence electron distribution in reciprocal space [9, 11, 19, 80]. Within the linear screening
approximation [29, 77], the valence electron density at a point, ρe(r), can be written as a sum
of the uniform background electron density, ne

0, and a superposition of the screening electron
density around each ion:

ρe(r) = ne
0 +

∑
Ri

nscr(r − Ri) (21)

where Ri denotes the position vector of the i th ion and the screening electron density per ion
is defined relative to the uniform background electron density as

nscr(r) ≡
∫

dk

(2π)3
ρ(k) exp(ik · r) − ne

0

N
(22)
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Figure 13. Comparison between the measured and theoretical gII(r) for liquid lithium at 197 ◦C.
The experimental data correspond to the new (λ = 0.7011 Å) neutron diffraction results (open
circles) and the theoretical results were obtained from classical molecular dynamics simulations,
made using either the Ashcroft empty core (dotted curve) [73] or neutral pseudoatom (NPA)-derived
(broken curve) [27] pseudopotential and from variational modified hypernetted chain (VMHNC)
calculations, made using either the Ashcroft empty core (chain curve) [72] or NPA-derived (full
curve) [11, 22] pseudopotential. The Ashcroft empty core radius was derived from the first peak
height in SII(k) measured in the present work. The inset shows in more detail the region about the
first peak maximum.

where ne
0/N = Z/V . It then follows that

ρe(r) =
∑
Ri

∫
dk

(2π)3
ρ(k) exp(ik · [r − Ri ]) (23)

where the ρ (k = 0) component corresponds to the uniform electron gas.
The valence electron–valence electron structure factor is given by

See(k) = |ρ(k)|2
Z

SII(k) + S0
ee(k) (24)

where the first term describes the part of the valence electron distribution that is correlated
with the ion positions while the second term, S0

ee(k), corresponds to the structure factor of a
uniform background gas of valence electrons and gives rise to an incoherent contribution to the
scattered intensity that can be measured in an inelastic x-ray (Compton) scattering experiment.



Structure of liquid lithium 215

1       2        3        4       5       6        7       8
Scattering Vector k [Å

– 1
]

0

1

2

3

S
tr

uc
tu

re
 F

ac
to

r 
S II

(k
)

Neutron data (λ = 0.4962 Å)
Neutron data (λ = 0.7011 Å)
MD–‘A’
MD–‘B’

197
 o
C

452
 o
C 

0.2 0.4 0.6 0.8 1.0
k [Å

– 1
]

0.01

0.06

SII(k)

197
 o
C

Figure 14. Comparison between the measured and simulated SII(k) for liquid lithium at
temperatures of 197 and 452 ◦C. The experimental data correspond to the new neutron diffraction
results for λ = 0.7011 Å (open circles) or λ = 0.4962 Å (full circles). The other results are from the
orbital-free ab initio molecular dynamics simulations of Anta and Madden [30] for pseudopotential
‘A’ (full curve) and for pseudopotential ‘B’ (dotted curve). The data for the 452 ◦C data set are
displaced by unity and the inset displays the low-k region for the 197 ◦C data set.

Neglecting the forward (k = 0) scattering, the intensity per ion measured in an x-ray diffraction
experiment on a liquid metal can be written as [5]

IX(k) = | fI(k)|2SII(k) + 2
√

Z fI(k)SIe(k) + Z See(k) + Z IS
I
inc(k) (25)

where fI(k) is the form factor of a metal ion in the liquid. The term Z ISI
inc(k) represents the

incoherent (Compton) scattering factor of the metal ion and therefore originates from the core
electrons. By using equations (20) and (24) it then follows that

IX(k) = | fM(k)|2SII(k) + ZA SM
inc(k) (26)

where the form factor of a pseudoatom in the liquid metal is given by

fM(k) = fI(k) + ρ(k) (27)

and its incoherent (Compton) scattering factor is given by

ZA SM
inc(k) ≡ Z S0

ee(k) + Z IS
I
inc(k). (28)



216 P S Salmon et al

Often, the x-ray structure factor, SX(k), of a liquid metal obtained by experiment is
published in the form

SX(k) = IX(k) − ZA SA
inc(k)

| fA(k)|2 (29)

where fA(k) and ZASA
inc(k) are the form factor and incoherent (Compton) scattering factor,

respectively, of a free atom. By using equation (26) it hence follows that

SX(k) =
∣∣∣∣ fM(k)

fA(k)

∣∣∣∣
2

SII(k) +
ZA(SM

inc(k) − SA
inc(k))

| fA(k)|2 . (30)

Provided SM
inc(k) ≈ SA

inc(k), the valence electron form factor is then given by

ρ(k) ≈
√

| fA(k)|2SX(k)

SII(k)
− fI(k) (31)

and subtraction of SII(k), as measured in a neutron diffraction experiment, gives

SX(k) − SII(k) ≈
[∣∣∣∣ fI(k)

fA(k)

∣∣∣∣
2

− 1

]
SII(k) +

2 fI(k)ρ(k)SII(k)

| fA(k)|2 +
|ρ(k)|2SII(k)

| fA(k)|2 . (32)

The valence electron form factor, ρ(k), was constructed using equation (31) with SII(k)

at 197 ◦C (obtained by averaging the λ = 0.4962 and 0.7011 Å results in the present work)
and SX(k) at 193(2) ◦C measured by Olbrich et al [33]. In this x-ray diffraction study, the
incoherent scattering contribution that originates from inelastic x-ray (Compton) scattering,
SM

inc(k), was estimated in a separate experiment during which the energy spectrum of x-rays
scattered from solid lithium was measured, i.e. an approximation to SM

inc(k) was used in place
of SA

inc(k) in equation (29). The fI(k) and fA(k) form factors were taken from tables [81]. As
shown in figure 15, ρ(k) tends, within the statistical errors, to the correct low-k limit of unity
for lithium. The x-ray data of Waseda [71] for liquid lithium were also used to construct ρ(k)

but the resultant function did not have the expected magnitude or shape.
In figure 15, the experimentalρ(k) for liquid lithium is compared with two approximations

for this function. The first is constructed by taking the difference between the atom and ion
form factors, [ fA(k) − fI(k)], calculated for free lithium [81] and the second is constructed
by taking the difference between the pseudoatom and ion form factors for lithium in the liquid
metal, [ fM(k) − f ′

I (k)], as obtained from the calculations of Anta and Louis [23], which
were made using the quantum hypernetted chain (QHNC) approximation. At low k there
are discrepancies between the two approximations for ρ(k) which cannot be attributed to the
ion form factors since fI(k) ≈ f ′

I (k). The discrepancies therefore arise from differences
between fA(k) and fM(k) and show the influence on the free atom form factor of bonding
in the liquid state. The experimental ρ(k) is high in the range ≈1–1.8 Å−1, which may be
traced, by using equation (31), to the x-ray data having a high intensity relative to the neutron
data (see figure 10). As pointed out by Olbrich et al [33], this may result from an error in the
measurement of the inelastic scattering correction SM

inc(k).
Notwithstanding, the experimental data are in better agreement with ρ(k) as calculated

for lithium in the liquid metal, i.e. there is a broader valence electron density in reciprocal
space for a pseudoatom in the metal than for a free atom, which means that in real space the
electron distribution at small distances is higher than for the free atom. Theory shows that
this enhanced valence electron density at small distances, which is also seen for other simple
liquid metals, is accompanied by a reduction of the density at slightly longer distances and by
longer-ranged oscillations of the valence electron density about the mean [22, 29, 78].
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Figure 15. The valence electron form factor, ρ(k), for liquid lithium at 197 ◦C, shown by the
points with error bars, as obtained by combining the new neutron diffraction results with the x-ray
diffraction data of Olbrich et al [33] according to equation (31). The experimental data are compared
with ρ(k) = [ fA(k) − fI(k)] for free lithium (broken curve) and with ρ(k) = [ fM(k) − f ′

I (k)] for
a pseudoatom in the liquid metal (full curve), where fA(k) (chain curve) and fI(k) are taken from
tables [81] while f ′

I (k) (dotted curve) and fM(k) (long dash curve) are taken from the quantum
hypernetted chain (QHNC) results of Anta and Louis [23].

The ion–valence electron partial structure factor, SIe(k), was constructed using
equation (20) with SII(k) at 197 ◦C (obtained by averaging the λ = 0.4962 and 0.7011 Å results
in the present work) and with ρ(k) taken from the combination of the neutron and x-ray data
shown by the points with error bars in figure 15. In view of the uncertainty associated with
the experimental SX(k) used to construct this ρ(k), SIe(k) was also constructed using two
approximations for ρ(k), namely the [ fA(k) − fI(k)] and [ fM(k) − f ′

I (k)] functions given
in figure 15. The results are compared in figure 16 with the orbital-free ab initio molecular
dynamics simulations of Anta and Madden made using pseudopotential ‘B’ [30] and also with
the full QHNC results of Anta and Louis [23].

Firstly, it is notable that the SIe(k) obtained directly from the experimental data has a
magnitude which is considerably smaller than that found in the previous experiments of Takeda
et al [75, 76] but which is comparable with theoretical expectations. Secondly, whereas the
SIe(k) function that results from using ρ(k) derived from the neutron and x-ray data has
notable oscillations, smoother SIe(k) functions of a diminished magnitude are obtained by
using the ρ(k) = [ fA(k) − fI(k)] and [ fM(k) − f ′

I (k)] approximations in equation (20). The
oscillations in SIe(k) that arise from a combination of the neutron and x-ray structure factors
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Figure 16. The ion–valence electron partial structure factor, SIe(k), for liquid lithium at 197 ◦C
(open circles) obtained by using equation (20) with SII(k) taken from the present neutron diffraction
work and with ρ(k) taken from (a) the combination of SII(k) with the SX(k) of Olbrich et al [33]
shown by the points with error bars in figure 15 (open circles), (b) ρ(k) = [ fA(k) − fI(k)] taken
from tables [81] (dotted curve) or (c) ρ(k) = [ fM(k)− f ′

I (k)] for a pseudoatom in the liquid metal
taken from Anta and Louis [23] (broken curve). The data are compared with SIe(k) obtained from
the orbital-free ab initio molecular dynamics simulations of Anta and Madden [30] made using
pseudopotential ‘B’ (full curve) and also with the full quantum hypernetted chain (QHNC) results
of Anta and Louis [23] (chain curve).

do not, therefore, appear to arise from some inherent problem associated with the neutron
diffraction data and ought not to result from the different resolution functions of the neutron
and x-ray diffractometers [30]: as shown in section 4, the main effect of the resolution function
occurs in the first peak region of the static structure factor. Rather, the oscillations may arise
from the approximations used in the analysis of the x-ray diffraction data [5]. Thirdly, there is
good overall agreement between the SIe(k) obtained by combining the measured SII(k) with
ρ(k) = [ fM(k) − f ′

I (k)] (which gives a better representation of the experimental ρ(k)—see
figure 15) and the SIe(k) obtained directly from the full QHNC method. The features of both
these SIe(k) for k � 2.5 Å−1 are also in good agreement with the SIe(k) obtained from the
orbital-free ab initio molecular dynamics simulation although there are notable discrepancies
at larger k values. The former results for SIe(k), including the appearance of a finite positive
value for SIe(k) at higher-k values, are supported by the SIe(k) calculated by González et al
[22]. Indeed, according to Louis and Ashcroft [82], the overall shape of these SIe(k) is typical
of low valence liquid metals (Z � 2) for which k̄0 < kp, where k̄0 is the first point at which
ρ(k) becomes zero with increasing k (≈ 2.0 Å−1 in figure 15) and kp is the position of the first
peak in SII(k) (≈ 2.5 Å−1 in figure 12).

In summary, the results show that the extraction of ρ(k) and SIe(k) by a combination of
neutron and x-ray diffraction data following Chihara’s approach [5] is feasible in practice but
demonstrate a need for new x-ray diffraction experiments on liquid lithium.

6. Conclusions

The ion–ion partial structure factor, SII(k), for liquid 7Li at temperatures of 197, 452 and
595 ◦C was measured by using neutron diffraction and the data were carefully analysed to
take into account pertinent issues such as (i) the influence of Brillouin modes on the measured
diffraction pattern at small scattering vectors, (ii) the accuracy of inelasticity corrections and
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(iii) the effect of the diffractometer resolution function. The SII(k) for liquid lithium at a given
temperature measured by using different incident neutron energies are in agreement within the
statistical errors. The SII(k) are compared with the results obtained from integral equation and
molecular dynamics simulations made using the Ashcroft empty core local pseudopotential
and also a local pseudopotential derived using the neutral pseudoatom (NPA) method. The
newly measured SII(k) pointed to the need for a re-parametrization of the Ashcroft empty core
radius and the revised pseudopotential leads to calculated SII(k) that are in good agreement with
experiment. It would therefore be interesting to re-calculate the ion–ion dynamical structure
factor, SII(k, ω), using this revised pseudopotential to see whether it leads to better agreement
with experiment, especially in the low-k region [38]. Finally, the valence electron form factor,
ρ(k), was estimated by combining the new experimental SII(k) with the x-ray diffraction data
of Olbrich et al [33] and the ion–valence electron partial structure factor, SIe(k), was calculated
by combining this SII(k) with the ρ(k) obtained from both experiment and theory. The resultant
functions have a magnitude and shape that are comparable with those expected from theory
for lithium in the liquid state and hence demonstrate that the experimental extraction of these
quantities is feasible in practice. The results do, however, call for new x-ray diffraction
experiments on liquid lithium.
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Appendix. Moments method of deconvolution

In a diffraction experiment, the intensity measured by a detector of finite size at scattering
angle 2θ will have a contribution from the structure factor at that scattering angle, SII(2θ), and
also from the structure factor at adjacent angles, SII(2θ + ρ), owing to the finite diffractometer
resolution function R(2θ, ρ). Hence the measured intensity can be written as

I (2θ) =
∫

R(2θ, ρ)SII(2θ + ρ) dρ (A.1)

where ρ is the angular displacement of the detector from the scattering angle 2θ . As shown
by Howells [66], the ‘moments method’ can then be used to deconvolute the structure factor
of the liquid from the measured intensity, I (2θ), when the form of the resolution function
is known. By making a Taylor expansion of the structure factor about SII(2θ) and by taking
the first and second derivatives of the measured intensity with respect to the scattering angle,
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I 1 ≡ d I (2θ)/d(2θ) and I 2 ≡ d2 I (2θ)/d(2θ)2, it can be shown that( I
I 1

I 2

)
=
(M00 M01 M02

M10 M11 M12

M20 M21 M22

)
 SII

S1
II

S2
II


 (A.2)

where S1
II ≡ dSII (2θ)/d(2θ) and S2

II ≡ d2SII (2θ)/d(2θ)2. The matrix elements Mi, j involve
the moments of the resolution function, which are defined by

Mn ≡ 1

n!

∫
ρn R(2θ, ρ) dρ (A.3)

where n is zero or a positive integer, together with the first and second derivatives of these
moments, M1

n and M2
n , with respect to the scattering angle 2θ . Specifically M00 = M0,

M01 = M1, M02 = M2, M10 = M1
0 , M11 = (M0 + M1

1 ), M12 = (M1 + M1
2 ), M20 = M2

0 ,
M21 = (2M1

0 + M2
1 ) and M22 = (M0 + 2M1

1 + M2
2 ). By inversion of equation (A.2) it then

follows that

SII(2θ) = m00 I + m01 I 1 + m02 I 2 (A.4)

where the mi j , which are elements of the inverse matrix M−1, are given by the expressions

m00 = (M11 M22 − M12 M21)/|M|
m01 = (M02 M21 − M01 M22)/|M|
m02 = (M01 M12 − M02 M11)/|M|

(A.5)

and |M| is the determinant of the matrix. In the case of a sharp peak in the uncorrected intensity,
the main effect of the first correction term 1 ≡ m01 I 1 will be to shift its position and the
main effect of the second correction term 2 ≡ m02 I 2 will be to further sharpen its height.
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